Part Number Hot Search : 
CX94410 E001591 LF50AB 60R190 MAD24054 HEF40 11422 DG302
Product Description
Full Text Search
 

To Download IRFP22N60KPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfp22n60k 4/2/02 www.irf.com 1  smps mosfet hexfet   power mosfet  hard switching primary or pfs switch  switch mode power supply (smps)  uninterruptible power supply  high speed power switching  motor drive benefits applications  low gate charge qg results in simple drive requirement  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche voltage and current  enhanced body diode dv/dt capability parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 22 i d @ t c = 100c continuous drain current, v gs @ 10v 14 a i dm pulsed drain current  88 p d @t c = 25c power dissipation 370 w linear derating factor 2.9 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt  15 v/ns t j operating junction and -55 to + 150 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c absolute maximum ratings avalanche characteristics symbol parameter typ. max. units e as single pulse avalanche energy  ??? 380 mj i ar avalanche current  ??? 22 a e ar repetitive avalanche energy  ??? 37 mj symbol parameter typ. max. units r jc junction-to-case ??? 0.34 r cs case-to-sink, flat, greased surface 0.24 ??? c/w r ja junction-to-ambient ??? 40 thermal resistance v dss r ds(on) typ. i d 600v 240m ? 22a to-247ac
 2 www.irf.com symbol parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 600 ??? ??? vv gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.30 ??? v/ c reference to 25 c, i d = 1ma  r ds(on) static drain-to-source on-resistance ??? 240 280 m ? v gs = 10v, i d = 13a  v gs(th) gate threshold voltage 3.0 ??? 5.0 v v ds = v gs , i d = 250a ??? ??? 50 a v ds = 600v, v gs = 0v ??? ??? 250 a v ds = 480v, v gs = 0v, t j = 125 c gate-to-source forward leakage ??? ??? 100 v gs = 30v gate-to-source reverse leakage ??? ??? -100 v gs = -30v symbol parameter min. typ. max. units conditions g fs forward transconductance 11 ??? ??? sv ds = 50v, i d = 13a q g total gate charge ??? ??? 150 i d = 22a q gs gate-to-source charge ??? ??? 45 nc v ds = 480v q gd gate-to-drain ("miller") charge ??? ??? 76 v gs = 10v  t d(on) turn-on delay time ??? 26 ??? v dd = 300v t r rise time ??? 99 ??? i d = 22a t d(off) turn-off delay time ??? 48 ??? r g = 6.2 ? t f fall time ??? 37 ??? v gs = 10v  c iss input capacitance ??? 3570 ??? v gs = 0v c oss output capacitance ??? 350 ??? v ds = 25v c rss reverse transfer capacitance ??? 36 ??? pf ? = 1.0mhz c oss output capacitance ??? 4710 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 92 ??? v gs = 0v, v ds = 480v, ? = 1.0mhz c oss eff. effective output capacitance ??? 180 ??? v gs = 0v, v ds = 0v to 480v  dynamic @ t j = 25c (unless otherwise specified) ns static @ t j = 25c (unless otherwise specified) i gss i dss drain-to-source leakage current   repetitive rating; pulse width limited by max. junction temperature.  i sd 22a, di/dt 360 a/s, v dd v (br)dss , t j 150 c.    starting t j = 25 c, l = 1.5mh, r g = 25 ? , i as = 22a  pulse width 300s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . s d g diode characteristics  symbol parameter min. typ. max. units conditions i s continuous source current ??? ??? 22 mosfet symbol (body diode) showing the i sm pulsed source current ??? ??? 88 integral reverse (body diode)  p-n junction diode. v sd diode forward voltage ??? ??? 1.5 v t j = 25 c, i s = 22a, v gs = 0v  ??? 590 890 t j = 25 c i f = 22a ??? 670 1010 t j = 125 c di/dt = 100a/s   ??? 7.2 11 t j = 25 c ??? 8.5 13 t j = 125 c i rrm reverse recovery current ??? 26 39 a t j = 25 c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) t rr reverse recovery time q rr reverse recovery charge ns c 
 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 22a 0. 1 1 10 100 v ds , drain-to-source voltage (v) 0. 1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.0v 20s pulse width tj = 150 c vgs top 1 5v 12v 10v 8.0v 7.0v 6.0v 5.5v bottom 5.0v 5. 0 6. 0 7. 0 8. 0 9.0 10. 0 v gs , gate-to-source voltage (v) 0.01 0.10 1.00 10. 00 100. 00 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25 c t j = 150 c v ds = 50v 20s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.001 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.0v 20s pulse width tj = 25 c vgs top 15v 12v 10v 8.0v 7.0v 6.0v 5.5v bottom 5.0v
 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ci s s v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 480v vds= 300v vds= 120v i d = 22a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25 c t j = 150 c v gs = 0v 1 10 100 1000 10000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25 c tj = 150 c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec
 www.irf.com 5 fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms   
 1     0.1 %           + -   fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0 5 10 15 20 25 t , case temperature ( c) i , drain current (a) c d
 6 www.irf.com 25 50 75 100 125 150 0 200 400 600 800 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 9.8a 14a 22a q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -   fig 13a. gate charge test circuit fig 13b. basic gate charge waveform fig 12a. maximum avalanche energy vs. drain current fig 12d. unclamped inductive waveforms fig 12c. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v
 www.irf.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfet   power mosfets   
     
              ?     ?   ?      ! "" ?  #   
$  $   ?  %&   ? ' (  ?  %)  $     
 8 www.irf.com 
     
    
         lead assignments notes: - d - 5.30 (.209) 4.70 (.185) 2.50 (.089) 1.50 (.059) 4 3x 0.80 (.031) 0.40 (.016) 2.60 (.102) 2.20 (.087) 3.40 (.133) 3.00 (.118) 3x 0.25 (.010) m ca s 4.30 (.170) 3.70 (.145) - c - 2x 5.50 (.217) 4.50 (.177) 5.50 (.217) 0.25 (.010) 1.40 (.056) 1.00 (.039) 3.65 (.143) 3.55 (.140) d mm b - a - 15.90 (.626) 15.30 (.602) - b - 123 20.30 (.800) 19.70 (.775) 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2x 2x 5.45 (.215) 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-247-ac. 1 - gate 2 - drain 3 - source 4 - drain data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir ? s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 4/02 part number logo rectifier int ernational assembly lot code line h week 35 year 0 = 2000 dat e code with assembly lot code 5657 as s embled on ww 35, 2000 in the assembly line "h" irfpe30 56 57 035h example: this is an irfpe30


▲Up To Search▲   

 
Price & Availability of IRFP22N60KPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X